skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Xiao, Changman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continual learning (CL) aims to enable models to incrementally learn from a sequence of tasks without forgetting previously acquired knowledge. While most prior work focuses on closed-world settings, where all test instances are assumed from the set of learned classes, real-world applications require models to handle both CL and out-of-distribution (OOD) samples. A key insight from recent studies on deep neural networks is the phenomenon of Neural Collapse (NC), which occurs in the terminal phase of training when the loss approaches zero. Under NC, class features collapse to their means, and classifier weights align with these means, enabling effective prototype-based strategies such as nearest class mean, for both classification and OOD detection. However, in CL, catastrophic forgetting (CF) prevents the model from naturally reaching this desirable regime. In this paper, we propose a novel method called Analytic Neural Collapse (AnaNC) that analytically creates the NC properties in the feature space of a frozen pre-trained model with no training, overcoming CF. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods in continual OOD detection and learning, highlighting the effectiveness of our method in this challenging scenario. 
    more » « less